
Received February 13, 2020, accepted March 9, 2020, date of publication March 16, 2020, date of current version March 31, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2980951

Classification of Authentic and Tampered Video
Using Motion Residual and Parasitic Layers
MUBBASHAR SADDIQUE1, KHURSHID ASGHAR 1, USAMA IJAZ BAJWA2,
MUHAMMAD HUSSAIN 3, HATIM A. ABOALSAMH3, AND ZULFIQAR HABIB 2
1Department of Computer Science, University of Okara, Punjab 56300, Pakistan
2Department of Computer Science, COMSATS University Islamabad, Lahore Campus, Lahore 54700, Pakistan
3Department of Computer Science, King Saud University, Riyadh 11451, Saudi Arabia

Corresponding author: Khurshid Asghar (khasghar@uo.edu.pk)

This work was supported in part by the Higher Education Commission (HEC) Pakistan under International Research Support Initiative
Program (IRSIP) under Grant # 1-8/HEC/HRD/2017/8030, for the visit at Korea University, South Korea, in part by the European Union’s
Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie Grant for PDE-GIR Project under Agreement #
778035, and in part by the King Saud University, Riyadh, Saudi Arabia, under Researchers Supporting Project # RSP-2019/109.

ABSTRACT These days, videos can be easily recorded, altered and shared on social and electronic media
for deception and false propaganda. However, due to sophisticated nature of the content alteration tools,
alterations remain inconspicuous to the naked eye and it is a challenging task to differentiate between
authentic and tampered videos. During the process of video tampering the traces of objects, which are
removed or modified, remain in the frames of a video. Based on this observation, in this study, a new
method is introduced for discriminating authentic and tampered video clips. This method is based on deep
model, which consists of three types of layers: motion residual (MR), convolutional neural network (CNN),
and parasitic layers. The MR layer highlights the tampering traces by aggregation of frames. The CNN
layers encode these tampering traces and are learned using transfer learning. Finally, parasitic layers classify
the video clip (VC) as authentic or tampered. The parasitic layers are learned using an efficient learning
method based on extreme learning theory; they enhance the performance in terms of efficiency and accuracy.
Intensive experiments were performed on various benchmark datasets to validate the performance and the
robustness of the method; it achieved 98.89% accuracy. Comparative analysis shows that the proposed
method outperforms the state-of-the-art methods.

INDEX TERMS Spatial forgery detection, motion residual, deep learning, extreme learning machine,
parasitic learning.

I. INTRODUCTION
In the digital era of 21st century, mobile phones, personal
digital assistants (PDAs) and digital camcorders are easily
available to acquire the videos. Moreover, these videos can
be redistributed for different purposes like video conferences,
surveillance systems, information propagation to the media
houses and social media websites. The quality and contents
of the videos can be modified with different video editing
tools. With the influx of these user-friendly video editing
tools, the novice user can alter the contents of the videos
to make false propaganda on the social media for their own
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purposes [1], [2]. Now a day, tampering detection in videos
is extremely difficult with naked eyes.

Videos tampering attacks can be categorized as: (i) spa-
tial domain, (ii) temporal domain, and (iii) spatio-temporal
domain [3]. In spatial domain, different objects can be added,
removed or replaced within a video frame or a series of
frames, whereas in the temporal domain, a number of frames
are added, removed or replaced from the video [4]. Spatio-
temporal domain is the combination of spatial and temporal
domain.

Many techniques are proposed to detect forgery in images
[5]–[7]. However, these cannot be considered effectively in
the present form for the detection of forgery in the frames
of videos due to the following reasons. Firstly, videos are
encoded and compressed before storage and transmission
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FIGURE 1. Tampering in spatial domain. (a) Authentic video frames. (b) Tampered video frames.

FIGURE 2. Categories of spatial tampering detection techniques.

to reduce the amount of data in video frames. Secondly,
computational complexity of these techniques becomes very
high when applied to a large number of video frames. Thirdly,
forgery traces are also available in consecutive frames of a
video. Such features are not available in case of images.

In spatial domain, tampering can be done in two different
ways i.e., copy move and splicing. In copy-move the object/s
is copied and pasted in frames of the same video and in
case of removing the object/s from the video, the region/s
is filled with the neighboring pixels from the same frame
of that video whereas, in case of splicing the tampering is
done with the object/s from different video/s. The focus of
this paper is on tampering detection in the spatial domain
of videos. An example of spatial tampering is shown in
Fig. 1. Authentic video frames are presented in Fig. 1 (a)
whereas Fig. 1 (b) describes frames of the tampered video.
The actual information is concealed by removing the object
in red rectangle shown in Fig 1(a) from all the frames F1, F2,
. . . , Fn and filled that areas with a block of pixels from the
same frame of a video. In this way, the viewers are misguided
by false information. The purpose of this type of tampering is
not simple retouching or format change, but to hide the facts
for propaganda or criminal intentions, which is dangerous and
has negative impact on society.

A. RELATED WORK
The existing technivided into two categories: Active and Pas-
sive [8]. Passive techniques do not need any pre-embedded
data such as watermark and signatures unlike active tech-
niques. The focus of this study is on passive techniques in
spatial domain and as such we give an overview of the state-
of-the-art related to this problem in the following paragraphs.

Different techniques proposed to detect tampering in spa-
tial domain can be divided into various categories based on
the types of features as shown in Fig. 2. In first category the
features are extracted based on noise. Kobayashin et al. [9]
employed noise characteristics, Hyun et al. [10] detected
forgery using sensor patter noise (SPN). Panday et al. [11]
worked with SIFT features, noise residual and correlation
to detect copy-move forgery. Goodwin and Chetty [12] also
used noise residual, quantization features and their trans-
formation in cross-model subspace to detect the copy-move
forgery.

In second category the features are extracted based on
frequency domain. Hsu et al. [13] used wavelet co-efficient
thresholding and Bayesian Classifier. Su et al. [14] applied
exponential-Fourier moments (EFM) for localizing the dupli-
cating region in the frames of the video. In [15] moment
feature of wavelet co-efficient and optical flow are combined
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with SVM to detect the facial expression re-enacted forgery
(FERF).

The features are calculated thourgh statistical method in
third category. Richao et al. [8] worked on statistical features.
Bagiwa et al. [16] explored statistical correlation of blurring
artifact. Singh and Aggarwal [17] used pixels correlation,
noise inconsistency and discrete fractional fourier transfor-
mation. Singh and Singh [18] exploited the correlation coef-
ficient to find the duplicated regions in the videos.

Fourth category of techniques is worked on optical flow
and motion residual. Bidokhti and Ghaemmaghami [19] pro-
posed a technique based on optical flow to detect a copy-move
forgery from MPEG videos In [20] block based motion esti-
mation is used to extract motion from the adjacent frames and
then the magnitude and orientation is employed to differenti-
ate the authentic and forged video. Al-sanjary et al. [21] pro-
posed optical flow inconsistencies and dynamic time warping
(DTW) matching algorithm to detect copy-move forgery in
videos. Bestagini et al. [22] utilized Zero-motion video resid-
ual. Chen et al. [23] used motion residual and steganography
features to detect the video forgery.

In fifth category the Subramanyam et al. [24] exploited
histogram of oriented gradients (HOG) features. The HOG
and its variants employ gradient orientation, which cannot
describe the local texture micro-patterns and variations effec-
tively. Also, it is not robust against noise [25] and does
not take into account the strength of edges. Su and Li [26]
detected copy-move forgery in first frame of the video by
employing MISIFT and used spatio-temporal context learn-
ing to detect the forged areas from remaining frames of the
video. Su et al. [27] used K-SVD (k-singular value decom-
position) algorithm and K-means. The technique presented in
[28] exposed the forgery in videos that have ballistic motion.

All above discussed techniques although achieved good
accuracy but with some limitations such as, these tech-
niques only work on specific formats, specific resolutions,
selected datasets and handcrafted features are used to detect
the forgery. Similarly Yao et al. [29] utilized a CNN to
extract high dimension features and used absolute difference
between successive frames to cut down the temporal redun-
dancy. A max pooling and high pass filter layers are used
to minimize the computational complexity and to increase
the residual, which left during the tampering process respec-
tively. Zampoglou et al. [30] employed Q4 and Cobalt foren-
sic filters with pre-trained GooLeNet and ResNet networks to
detect the video forgery. These techniques although produced
good results, however cannot work well in presence of small
size tampering.

B. MULTIMEDIA FORENSIC USING DEEP LEARNIN
In recent years, deep neural networks, such as deep belief
network (DBN) [31], stacked auto encoder (SE) [32] and
convolutional neural network (CNN) [33]–[35] have shown
the capability of learning robust feature representations.
This allows to generalize across a wide variety of com-
puter vision (CV) tasks such as image classification [36],

speech recognition [37], image forensic [6] etc. However,
a deep model requires a lot of time, a large amount of data
and a powerful computing environment for its training from
scratch. The collection of a large amount of domain specific
data and its labeling is a tedious and costly task, and even
acquiring a sufficient amount of data may not be practical in
many cases [38], [39]. In such cases, the only way to employ
deep learning is to use transfer learning (TL), which unlocks
a new stream of techniques. In TL, a deep model is trained
using a dataset from a related domain and then it is employed
for the application under consideration. There are two main
approaches for TL: (1) first pre-train a deep model using the
data from a related domain and then fine-tune the weights
using the data from the domain of the problem, (2) use trained
deep model as a feature extractor by freezing all layers other
than the last classification layers, extract features and pass
them to a classifier such as support vector machine (SVM) for
classification [40]. The second approach has been effectively
employed for many recognition and classification tasks [41].
For video tamper detection problem, enough data is not
available to train a deep CNN model from scratch. As such,
the second TL approach is employed to propose a method
based on deep model, which comprises three types of layers
i.e., motion residual, CNN and parasitic layers. This deep
model is used in our method for the classification of authentic
and tampered video clips (VCs).

The outstanding performance of deep CNN in many appli-
cations motivated the research in this direction and many
deep CNNmodels such as AlexNet [36], GoogleNet [42] and
VGG-16 [35] have been proposed. These models have shown
far better performance than hand-engineered techniques in
many applications. Different existing deep CNN models are
examined and selected VGG-16 for our deep model because
its convolutional layers contain kernels of small size i.e., 3×3,
which is suitable to characterize the small tampering traces.
We employed VGG-16 model, pre-trained on the large scale
ImageNet datase; by removing its last fully connected (FC)
layers, we used its leftover layers as CNN layers in our deep
model. For decision making, the parasitic layers in the deep
model rely on the discriminant features extracted by the CNN
layers and motion residual layer, just like parasites in biology
[43], therefore we call them as parasitic layers. The parasitic
layers involve a small number of learnable weights, which
can be easily learned using the available data for video tamper
detection.

This study consists of following contributions: (i) For
video tamper detection, an efficient and robust method has
been introduced, (ii) for this method, a deep model has been
proposed; it consists of three types of layers: motion resid-
ual layer, CNN layers, and parasitic layers, (iii) an efficient
training method has been introduced for parasitic layers,
which is based on extreme learning theory and improves
the overall performance in terms of accuracy and efficiency.
The proposed method based on the deep model gives better
accuracy (98.89%) and efficiency for the classification of
authentic and tampered VCs on different datasets than the
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state-of-the-art methods. According to our knowledge, this
type of efficient and robust method based on deep learning
has been introduced first time for video tamper detection

C. MOTIVATION AND GOALS
When a forger tampers video by adding or removing any
object, the traces/shapes of that object remain in the video,
although it is post-processed to conceal the tampering traces.
These shapes/patterns can be learned through deep networks
from the huge amount of data, but it is a time-consuming task
and difficult to label all the data. Furthermore, the learning
of the huge number of weights at each layer is required,
which need more time. Similarly, another limitation is that
a large number of tampered videos are not available to learn
all these shapes. Based on these limitations, transfer learning
is explored.

The objective of this study is to investigate the capability of
deep CNN for classification of authentic and tampered videos
and target to answer these questions: (a)Whichmodel of deep
learning should be employed? (b) Which part of the model
should be used for feature extraction and representation of the
tampered traces? (c) How many layers should be transferred
in order to obtain best performance? (d) Which classifier is
best to classify authentic and tampered videos? (e) How to
modify the existing deep CNN model to make a new model
for classification of authentic and tampered videos?

D. ORGANIZATION OF STUDY
The rest of the study is organized as follows. In section 2,
the methodology is described in detail. Evaluation detail and
datasets are elaborated in section 3. Extensive experiments
detail and their analysis are presented in section 4 and 5.
Finally, section 6 concludes this study with future work.

II. PROPOSED METHOD
In this section, a method based on deep learning is pre-
sented for the classification of VCs as authentic or tampered.
The method takes a VC as an input and gives the decision
whether it is authentic or not. A video is segmented into non-
overlapping VCs, and its authenticity is validated based on
whether all VCs are authentic. If a video is tampered, then
this approach not only detects tempering but also localizes
the probable tempered frames.

A video (V ) containing N frame is divided into non-
overlapping VCs, each consisting of W frames, where W =
2m + 1 for some integer m. We tested W with m = 4, 6,
8, 10, 12, 14. The W = 9 with m = 4 was selected as the
initial size of VCs for experiments because in order to create
plausible tampering ‘‘at least’’ 10 frames are manipulated
(because manipulation of fewer frames will not accomplish
anything meaningful) [44]. Empirically, we found that W =
21 with m = 10 results in better detection performance; it
means that more than 10 frames are necessary for reliable
detection; the frames in a VC in addition to tampered frames
from the context and this contextual information lead to better
detection performance. In case, the total number of frames of

a video is not exact multiple of 21, the last VC consists of
less than 21 frames. In this case, the last VC is created by
taking the last 21 frames of the video. In this way, the method
authenticates each VC one by one to verify complete video.

The method consists of a deep CNN model, which com-
prises three types of layers: (i) motion residual (MR) layer,
(ii) CNN layers which involve convolutional, pooling and
fully connected layers, (iii) parasitic layers. The overall archi-
tecture is shown in Fig. 3. The MR layer takes a VC of
size W as input and calculates the motion residual for
each of R, G and B channels, and concatenates them as a
3- channel activation, which is passed to CNN layers. TheMR
highlights the tampering traces by aggregation of frames. The
CNN layers compute the hierarchical representation of the
VC. Finally, parasitic layers work as a classifier and predict
whether the VC is authentic or tampered. The detail of each
layer is elaborated in the following subsections.

A. MOTION RESIDUAL (MR) LAYER
The videos can be tampered by adding and/or deleting the
objects with sophisticated tools, but to hide the tampering
traces (lines, edges), different operations such as video in-
painting, contrast adjustment, blurring, and video layer fusion
are performed. In this way, some specific statistical properties
of the tampered videos are altered. These alterations can help
in tampering detection, if they are modelled well. One way to
model these alterations is to use MR of the video sequences
[23], which is calculated by MR layer. The visual description
of MR layer is shown in Fig. 4. The calculation of motion
residual is elaborated in algorithm 1.

Algorithm 1 The Computation of Motion Residual (MR)
Input: Non-overlapping video clip (VC) of size W
Output: Motion residual of VC
Procedure:

1. Identify the central frame Fc of VC
2. Apply aggregated function = on VC and compute

aggregated frame AF
3. Compute motion residual MR such that MR =

|Fc − AF |

An aggregated operation is performed over a VC to get an
aggregated frame (AF) which is defined as

AF(x, y) = =[Fc−NB(x, y), . . . ,Fc(x, y), . . . ,Fc+NB(x, y)],

(1)

where Fc is the central frame, NB = m. The operator = is
an aggregated function that processes the pixels in the same
positions of all frames in the VC.

The MR of VC is calculated as follows:

MR(x, y) = |Fc(x, y)− AF(x, y)| , (2)

where |.| denotes the absolute value. In this study, four aggre-
gated functions =Minimum, =Maximum, =Median, and =Average are
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FIGURE 3. Architecture of the proposed method for the classification of authentic and tampered VC.

FIGURE 4. Motion Residual (MR) layer of VC of size W = 7. Each frame has three channels R, G and B. MR is calculated for each channel and as
such MR has three channels.

examined. These functions are defined as:

=Minimum(x, y) = Min (Fc−NB(x, y), . . . ,Fc(x, y), . . . ,

Fc+NB(x, y)) , (3)

=Maximum(x, y) = Max (Fc−NB(x, y), . . . ,Fc(x, y), . . . ,

Fc+NB(x, y)) , (4)

=Median(x, y) = Median (Fc−NB(x, y), . . . ,Fc(x, y), . . . ,

Fc+NB(x, y)) , (5)

=Average(x, y) =

(
w∑
i=1

Fi(x, y)

)
/w, (6)

where (x, y) is the position of a pixel in all frames of
VC. Please note that according to equations (3) to (6) the

AF(x, y) ∈ {0, . . . , 255}which yields MR, whereMR(x, y) ∈
{0, . . . , 255} There are four scenarios for recording a video:

• Scene and camera both are static
• Scene is static but camera is moving
• Scene is moving and camera is static
• Scene and camera both are moving

In the first scenario, a small change occurs in the frames of a
VC due to acquisition noise. The distribution of this noise is
symmetric in all the frames of VC [10], [23]. Therefore, MR
is almost zero in case of authentic VC because Fc−NB(x, y) ∼=
· · · ∼= Fc(x, y) ∼= · · · ∼= Fc+NB(x, y). However, in a tampered
VC, the tampered regions in all the frames of the VC are not
consistent and due to these inconsistent tampered regions, the
noise patterns are not same in the frames of VC. Similarly,
in other three scenarios the noise patterns of the forged VCs
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are different from those of authentic VCs. As such, MR
is helpful to highlight these changes which are introduced
during the tampering process. With the increase/decrease of
motion in a scene, though there is a variation in the patterns
of MRs of tampered VCs, they are different from those of
authentic VCs. In all TheMR layer takes VC of any resolution
and gives the output rescaled to 224 × 224 × 3. Then this
activation of MR is fed forward to CNN layers for further
processing.

B. CNN LAYERS
A CNN [43] is a type of deep learning model which has
shown excellent performance on pattern recognition tasks
such as hand-written digit classification, image classification
and human action recognition [36], [40]. It is a hierarchical
learningmodel withmultiple hidden layers, which transforms
the input volume to output categories. Its architecture con-
sists of three main types of layers: convolutional layer, pool-
ing layer, and fully-connected layer. One limitation of deep
model is over-fitting when it is learned with small datasets.
However, the over-fitting can be avoided by increasing the
size of the training data, but it is a difficult and expensive task
to arrange a large amount of annotated data. In this situation,
transfer learning comes into play and solves this issue by
using pre-trained model to generate a new architecture [45].
In this study, using pre-trained VGG-16 model, a method
based on deep model, is proposed for the classification of
authentic and tampered VCs. In the proposed method, the
input layer and last two layers (FC8, softmax) of VGG-
16 model are replaced. The input layer is replaced with MR
layer which has been discussed earlier. The last two higher
layers are replaced with parasitic layers which are discussed
later in section parasitic layers. The intermediate layers of
VGG-16 model, other than the first and the last two layers are
freezed (see Table 1) and used as CNN layers in the proposed
method.

The CNN layers are trained on an ILSVR dataset [46] by
using stochastic gradient descent (SGD) [47]. The detail of
key parameters of these layers is shown in Table 1. In this
table, four kind of components are described in terms of
kernel dimension, number of kernels, stride and padding. The
Conv, pooling and FC represents the convolution, pooling
and fully connected layers respectively. Furthermore, each
convolution layer has a rectified linear unit as the activation
function. The deep and discriminant representation of the
tampered traces is obtained from the fully connected layer
FC7. Then the activation of FC7 layer is fed forward to
parasitic layers.

C. PARASITIC LAYERS
Detection of video tampering is a two class problem (authen-
tic or tampered). The last fully connected layers of VGG-
16 learn the task specific knowledge and are trained using
SGD algorithm, which needs a huge volume of data and a
lot of time. As an attempt to address this issue, the FC8 and
softmax layers of the VGG-16 are replaced with two new

TABLE 1. The parameters detail of CNN layers.

layers, which depend on the activation of FC7 layer and
thus the name parasitic layers. These layers are learned using
an extreme learning machine (ELM) [48], [49] algorithms,
which improve the efficiency and accuracy of classification.

As there are two classes in the problem of video tampering
detection, therefore, FC9 contains only two neurons. The
number L of neurons in FC8 depends on the learning choice
such as learning algorithm 1 or learning algorithm 2. In the
case of learning algorithm 1, the neurons of FC8 use ordinary
activation functions such as sigmoid, hard-limit, sine func-
tions and their number are fixed using cross validation. When
the learning algorithm 2 is used, the neurons of FC8 use a
kernel function such as RBF, linear, or polynomial kernel and
their number are fixed by the number of training examples.
The fully connected layer FC7 acts as an input layer for both
options. These learning algorithms save the time and reduce
the computational cost significantly because they learn the
parameters of FC8 and FC9 by solving the closed form
optimization problem.

In the proposed method, the learnable layers are CNN
layers and parasitic layers. The CNN layers are pre-trained
using ImageNet dataset and the learnable part consists of only
parasitic layers, which involve a small number of parameters
and the available data is enough to learn these layers, so there
is no problem of over-fitting.

1) LEARNING ALGORITHM 1
This learning algorithm is motivated by ELM [49]. In this
algorithm, during the learning process, the weights and biases
of FC8 layer are randomly assigned and weights of FC9 are
computed by solving a closed form problem. Let the weights
and bias of the ‘ith’ neuron of FC8 be denoted by the row vec-
tor w8

i =
[
w8
i1 w

8
i2 ... w

8
is

]
and b8i as shown in Fig. 5. Also,

let the output of the layer FC7 be denoted by s-dimensional
vector X7, then the output L-dimension vector Z of FC8 is
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FIGURE 5. The architecture of parasitic layers.

calculated as:

Z = f (W8X7
+ b), whereW8 and b is weight

matrix and bias vector of FC8 such that : (7)

W8
=
[
(w8

1)
T (w8

2)
T ... (w8

L)
T
]T

and b =
[
b1 b2 ... bL

]T
, (8)

T and f are the transpose and the activation function (sig-
moid, sine and hard-limit) respectively, which are defined
by equations (13), (14) and (15). Let W9 be the weights of
FC9 then the output of FC9 is a 2-dimension vector such

that
−

Y =W9Z . If X0
1 ,X

0
2 , . . . ,X

0
n are the training examples,

then the corresponding outputs of FC8 are Z1,Z2, . . . ,Zn,
which are combined into a L × n matrix Z such that Z =
[Z1,Z2, . . . ,Zn] .Therefore, the output 2×nmatrix of FC9 is:

−

Y =W9Z (9)

If y1, y2, . . . , yn are the labels of training examples
X0
1 ,X

0
2 , . . . ,X

0
n thenY = [y1, y2, . . . , yn] is a 2×nmatrix of

the original labels. We expect that the predicted labels must
match with Y i.e.:

Y =
−

Y (10)

From equation (9) and (10), we get,

Y =W9Z (11)

In equation (11),W9 is unknown and is calculated by solving
the equation (11) as follows:

W9
= YZ=, (12)

where Z=
= ZT ( 1c + ZZT )−1 is the Moore-Penrose gener-

alized inverse of Z and for stable solution a regularized term
1/C is added. The learning algorithm 1 is outlined in Algo-
rithm 2. The equations of the activation functions (sigmoid,
hard-limit and sine) are as follows.

Sigmoid function :

G(a, b,X )=
1

1+ e−(a.X+b)
, (13)

Hard− limit function :

G(a, b,X )=

{
1, if a.X − b > 0
0, otherwise.

(14)

Sine function :

G(a, b,X )=sin(a.X + b). (15)

Algorithm2Learning of Parasitic LayersUsing Simple ELM

Input: Activations of FC7 layer X7
1 ,X

7
2 , . . . ,X

7
n , activation

function f , number L of hidden neurons in FC8 layer
Output: Parameters of the parasitic layers
Procedure:

1. Assign random weights W 8 and biases b8 to the L
hidden neurons of FC8

2. Calculate the activations Z1,Z2, . . . ,Zn of
X7
1 ,X

7
2 , . . . ,X

7
n using equation (7) and form

matrix Z = [Z1,Z2, . . . ,Zn]
3. Compute Z=, the Moore-Penrose generalized inverse

of Z
4. Compute W9 using equation (12)
5. ReturnW8, b8, and W9

2) LEARNING ALGORITHM 2
This learning algorithm is motivated by kernel ELM [48].
In this learning algorithm, the number L of neurons in
FC8 layer is equal to the number n of training examples
i.e., L = n. The weights and bias of the ‘ith’ neuron at FC8 are
assigned such that W 8

i = X7
i and bi = 0 where X7

i is the
output of the training example Xi through FC7. The output
matrix Z of FC8 layer is calculated using a kernel function
such as Radial Bases Function (RBF), linear and polynomial
functions. If X is any input pattern, and X7 is the output
through FC7, then the corresponding output Z from FC8 is:

Z (X7) =


K (X7,X7

1 )
K (X7,X7

2 )
.

.

.

K (X7,X7
n )

 . (16)

Let W9 be the weights of FC9 then the output of

FC9 is a 2-dimension vector such that
∼

Y = W9Z . If
X0
1 ,X

0
2 , . . . ,X

0
n are the training examples and their activa-

tions by FC7 layer are X7
1 ,X

7
2 , . . . ,X

7
n then their activations

by FC8 are Z1,Z2, . . . ,Zn, which are arranged into n × n
symmetric kernel matrix Z = [Z1,Z2, . . . ,Zn] i.e.,:

Z=


K (x71 , x

7
1 ) K (x72 , x

7
1 ) • • • K (x7n , x

7
1 )

K (x71 , x
7
1 ) K (x72 , x

7
1 ) • • • K (x7n , x

7
1 )

• • • • • •

• • • • • •

• • • • • •

K (x71 , x
7
n ) K (x72 , x

7
n ) • • • K (x7n , x

7
n )

 .
(17)
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Then, the output matrix of FC9 is:

∼

Y =W9Z (18)

If y1, y2, . . . , yn are the labels of training examples
X0
1 ,X

0
2 , . . . ,X

0
n thenY = [y1, y2, . . . , yn] is a 2×n dimension

matrix of original labels. We expect that the predicted labels
must match with Y i.e.,:

Y =
∼

Y (19)

Equations (18) and (19) can be combined as:

Y =W9Z (20)

In equation (20), W9 is unknown and can be calculated by
solving the equation (20) because Z is a symmetrical matrix
such that:

W9
= YZ−1 (21)

For stable solution a regularized term 1/C is added in equation
(21) as:

W9
= Y(

1
c
+ Z−1) (22)

The learning algorithm 2 is presented in Algorithm 3. The
equations of the kernel functions RBF, linear, and polynomial
are as follows:

RBF Kernel : K (X ,X ′) = exp

(
−

∥∥X − X ′∥∥2
2σ 2

)
, (23)

Linear Kernel : K (X ,X ′) = X .X ′, (24)

Polynomial Kernel : K (X ,X ′) = (X .X ′ + b)d , (25)

Algorithm 3 Learning of Parasitic Layers With Kernel ELM

Input: Activations of FC7 layer X7
1 ,X

7
2 , . . . ,X

7
n , Kernel

function
Output: Parameters of the parasitic learning layer
Procedure:

1. Assign the value of neurons such that W 8
i = X7

i and
b8i = 0 where i = 1, 2, . . . , n
w8
= [w8

1,w
8
2, . . . ,w

8
n],b

8
= [b81, b

8
2, . . . , b

8
n]

2. Calculate the activations Z1,Z2, . . . ,Zn of
X7
1 ,X

7
2 , . . . ,X

7
n using equation (16) and form

matrix Z = [Z1,Z2, . . . ,Zn]
3. Calculate the output weight W9 using equation (22)
4. ReturnW8, b8 = 0 andW9

III. EVALUATION FRAMEWORK
This section first gives an overview of the datasets used for
evaluation and then presents the detail of the evaluation pro-
tocol that are used for the validation of the proposed method.

A. DESCRIPTION OF DATASETS
The proposedmethod is validated on six (6) different datasets.
The videos of these datasets have different resolutions includ-
ing 320 × 240, 720 × 480, 768 × 576 and 720 × 1280. The
formats of the videos are AVI, MOV, MP4 and WMV. Some
datasets were captured with static cameras, some with mov-
ing cameras and some with both. The detail of these datasets
is presented in Table 2. All the datasets containing tampered
videos were created for research on video tamper detection
and keeping in view this purpose, the videos were tampered
to simulate the intentional video tampering scenarios.

The dataset D1 was captured with three types of cameras
i.e., Cannon, Fuji and Nikon and it contains 100 authentic
videos having frame rate of 30fps and resolution 320× 240.
It has AVI and WMV formats. The length of the videos
varies between 4 to 15 seconds. The D2 dataset contains
a total of 20 videos, in which 10 videos are authentic and
10 are forged. The frame rate is 30fps and length varies
between 7 to 19 seconds. The dataset D3 has 14 authentic
and 6 forged videos. The length varies from 3 to 17 seconds.
The D4 dataset consists of 6 authentic and 121 forged videos.
Five videos were captured with a static camera and one with
moving camera. This dataset has frame rate of 30 and the
length of the videos varies from 2 to 16 seconds. Each authen-
tic video is forged with different geometric transformations
(flipping, rotation, scaling and shearing) and post-processing
operations (luminance, RGB, None). In this dataset, the
forgery was done such that it could be visible and invisible
with naked eyes.

The D5 dataset comprises of 40 videos, in which 20 videos
are authentic and 20 are forged. The frame rate of this dataset
is 29fps and the duration of videos is between 14 to 15 sec-
onds. Static and moving cameras are involved to capture the
videos. In this dataset the tampered videos are created with
copy-move and splicing forgery. The dataset D6 was created
from the datasets D1, D2, D3 and D5 such that authentic
videos are taken fromD1 and forged videos from datasets D2,
D3 and D5. The D7 dataset consists of a total 150 authentic
and 157 forged videos taken from the datasets D1 to D5.
Authentic videos are collected from D1, D2, D3, D4 and
D5 whereas forged videos are taken fromD2, D3, D4 and D5.

B. EVALUATION PROTOCOL
The generalization and robustness of the method on different
datasets Di where i = 2, 3, 4, 5, 6, 7 are evaluated using
10-fold cross validation i.e., VCs from videos in each dataset
are partitioned into 10 folds. Each fold is held out in turn
for testing and remaining folds are used for training. The
results are reported as the average and standard deviation of
10-folds. It is employed to ensure that the proposed method
is not suffering from over-fitting.

Performance of our proposed method is evaluated using
different evaluation measures such that true positive rate
(TPR), true negative rate (TNR) and accuracy (AC). The
t-SNE method [53] is introduced to give the discriminant
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TABLE 2. Detail of all datasets.

analysis of features used in proposed method. Assuming that
the videos which are authentic are called negative cases and
the video sequences have some tampered object(s) known as
positive cases.

There are four possible categories to judge the binary
(positive or negative) classification problem. (1) True positive
(TP): positive samples that are classified as positive; (2)
true negative (TN): negative samples that are classified as
negative; (3) false positive (FP): negative samples that are
classified as positive and, (4) false negative (FN): positive
samples that are classified as negative. These metrics are
defined as:

AC =
TP+ TN

TP+ TN + FP+ FN
, (26)

TPR =
TP

TP+ FN
, (27)

TNR =
TN

TN + FP
, (28)

IV. EXPERIMENTAL SETUP, RESULTS, COMPARISONS
AND DISCUSSION
Several VCs are used to demonstrate the effectiveness and
robustness of the proposed method. The experiments are per-
formed with MATLAB 2016b. The hardware specification is
as follows. CPU: Intel Xeon 2.67 GHz, Memory size: 16 GB,
OS: Microsoft Windows 8.0.

A. HYPER PARAMETERS TUNING
Different hyper parameters like aggregative functions,
VC sizes, classifiers, number of CNN layers, activations, and
kernel functions are required to be tuned in the proposed

method which affects the accuracy. The effect of these param-
eters is elaborated below in detail.

1) EFFECTIVENESS OF DIFFERENT AGGREGATIVE
FUNCTIONS WITH DIFFERENT VIDEO CLIP (VC) SIZES W ON
ACCURACY
The influence of VC size of W frames with different aggre-
gated functions on accuracy is shown in Fig. 6. The activation
of FC7 layer of CNN layers are used to select the best clip
sizeW with different aggregated functions. The best accuracy
is achieved 98.89% by =Median on VC of size W = 21,
NB = 10, and m = 10. The accuracy using =Median is
increasing steadily with the increase of clip size W . After
clip size ofW = 21, the accuracy starts decreasing, however,
all other aggregated functions like maximum, minimum and
average have lower accuracy as compared to the median
function. Aggregated function =Median and W = 21 are used
for all other experiments.

2) EFFECT OF DIFFERENT NUMBER OF LAYERS OF
VGG-16 ON ACCURACY WITH DIFFERENT CLASSIFIERS
In this research, one of our objective was to find out how
many layers of the VGG-16 model are required to freeze for
transfer learning to achieve best accuracy for classification
against authentic and tampered VCs. Activations of different
layers of VGG-16 model are used with different classifiers.
The best result is achieved on activation of FC7 layer with
our proposed parasitic layers as shown in Fig. 7. The accu-
racy is decreased for all other classifiers, as the layers are
increased. Based on experiments, the activation of FC7 layer
is selected as input to proposed parasitic layers. Furthermore,
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FIGURE 6. Accuracy (%) comparison of different aggregative functions with different video clips of size W frames.

FIGURE 7. Effect of different layers of VGG-16 on accuracy with different classifiers.

it is evident from experiments that the best results are
obtained with proposed parasitic layers using the RBF kernel
as compared to other classifiers.

3) EFFECT OF DIFFERENT ACTIVATION AND KERNEL
FUNCTIONS IN PARASITIC LAYERS
The accuracy depends on the number of hidden layer neurons
and the way through which weights are calculated of these
neurons. Two algorithms are applied as discussed earlier
in the parasitic layers section. In the learning algorithm 1,
the numbers of hidden layer neurons are selected manually,

and weights are given randomly. Different activation func-
tions are used to calculate the weights of output matrixZ. The
experiments are started with the number of neurons 200 and
are increased gradually with the step size 100 for all the
activation functions to obtain the accuracy on dataset D7. For
detail see Fig. 8 and Table 3.

It is evident from Fig. 8 that the accuracy is gradually
increasing with an increasing number of neurons. The highest
accuracy 90.33% is achieved using sigmoid function when
the number of neurons are 700. As the number of neurons
increased from 700 to 800, there is no change in the accuracy
as shown in Fig. 8. Therefore, stopped further to tweak the
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TABLE 3. Time efficiency and accuracy in percentage with different activation functions on dataset D7.

TABLE 4. Time efficiency and accuracy in percentage with different kernels on dataset D7.

values of neurons. Similarly, in the learning algorithm 2,
different kernels (polynomial, linear and RBF) are used in
the parasitic layers and achieved accuracies empirically on

dataset D7, which are presented in Table 4. For the polyno-
mial kernel, three parameters (C , b, and d) needs to be tuned
to obtain accuracy. The best accuracy 93.87% is achieved
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FIGURE 8. Effect of different number of hidden neurons.

FIGURE 9. Effect of parameter value b in polynomial kernel on accuracy. (a) When C = 2, d = 2. (b) When C = 3,
d = 2. (c) When C = 4, d = 2.

on the polynomial kernel with the parameter values C = 3,
b = 0.3, and d = 3. The values of parameters (C , b, and d)
increased gradually until accuracy stopped increasing further.
The parameter b is started tweaking from 0.1 with the incre-
ment of step size 0.1. A graph is shown in Fig. 9 for different
values of b (0.1 to 0.5) at (C = 2, 3, 4) and d = 2. The
accuracy started decreasing after b = 0.4, therefore, stopped
tweaking further. A similar, process is also completed with
the value of d andC. The highest accuracy 90.16% is achieved
for the linear kernel at C = 3. For further improvement in
accuracy, the RBF kernel is investigated and to get results the
values of parameters (C and σ ) are tuned empirically. The
best accuracy 98.89% is obtained with C = 3, σ = 0.2
on this kernel because this kernel has good generalization
capabilities and tolerance to noise.

The time efficiency is also calculated for both algorithms.
The results with time calculation are shown in Table 3 and 4.
The time efficiency is improvedwhich is also endorsed during
comparison with methods [8] and [23] (see Table 6). The
reason to improve time efficiency is elimination of gradi-
ent descent algorithm to calculate weights of the neurons
in FC8 layer. Moreover, the method learns the parameters
of FC8 and FC9 by solving the closed form optimization
problem.

B. EFFECTIVENESS ON DIFFERENT DATASET
The proposed method is verified on different tampered video
datasets. The achieved accuracy is 96.34%, 97.45%, 95.37%,
96.75%, 93.68% and 98.89% on D2, D3, D4, D5, D6, and
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FIGURE 10. (a) Visualization of features distribution extracted through FC7 of proposed method. (b) Visualization of features distribution of [23].

TABLE 5. Performance of the proposed method on various datasets and
their combination.

D7 datasets respectively as shown in Table 5. The best accu-
racy 98.89% is accomplished on D7, which is a combination
of all datasets. The lowest and highest accuracies are 93.68%
and 98.89% on dataset D6 and D7 respectively. The accura-
cies on dataset D6 is the lowest because in this dataset the
authentic and forged videos were not the same. Furthermore,
the proposed method is independent of frame rate and video
resolution. Each video is divided into non-overlapping VCs
of fixed size W = 21 frames which makes method indepen-
dent of frame rate, and then checks the authenticity of each
VC instead of verification of video. Similarly, the method
takes VC of any resolution and MR layer gives the rescaled
output of 224×224×3, due to this reason the method works
on all resolution.

C. COMPARISON WITH THE STATE-OF-THE-ART
For validation the results are compared with state-of-the-
art methods (see Table 6 and Table 7). To the best of our
knowledge, only a few methods are available in the literature
for detection of object-based tampered video. The proposed
method is compared with two state-of-the-art techniques
dealing with object-based tampering in videos developed by
Richao et al. [8] and Chen et al. [23]. The results achieved
with proposed method and state-of-the-art techniques on
dataset D7 are shown in Table 6.

The comparison reveals that the proposed method has bet-
ter accuracy on D7 dataset, which involves different types

of geometric transformations and post processing operations.
The method outperforms than the both methods and works
well against different types of geometric transformations and
post-processing operations. The success of any classification
system depends on how accurately? it models the struc-
tural changes occurring in video frames due to tampering.
During tampering lines, edges, and corners are introduced,
which are considered artifacts of tampering. Feature extrac-
tion using modified CNN represented these artifacts more
precisely and the classification results are improved. For a
fair comparison, the method requires to be compared on same
dataset. Since, the videos used in [8] and [23] are not publicly
available, and the proposed method cannot be tested on these
videos. The methods in [8] and [23] were implemented with
same setting of parameters and were tested on dataset D7.
The comparison is shown in Table 6. The performance of the
proposed method is significant as compared to methods in [8]
and [23] because hierarchical features extracted using CNN
layers are more discriminative than hand-crafted features.

The performance of the proposed method is also invariant
to different geometric transformations such as scaling, rota-
tion, shearing and mirroring as compared to methods in [1]
and [26]. The accuracy of the proposed method is better than
the state-of-the-art methods which are trained and tested on
D2 dataset, as shown in Table 7.

V. DISCRIMINATIVE ANALYSIS OF FEATURES
The extracted features from FC7 layer of the proposed
method are also evaluated to study the discriminating nature
of the features. The method of t-SNE [53] is introduced
as the evaluation criteria. This method is commonly used
for evaluating the discriminating properties of features [54].
The visualization of features distribution extracted from
FC7 layer of the proposed method and method in [23] is
shown in Fig. 10. Two coloured points represent instances of
two types. Red points represent the authentic instances and
the blue points represent tampered instances. It is obvious to
see from Fig. 10a that the proposed method gives discrimi-
nating high level features which contribute to provide good
accuracy and better generalization as compared to [23].
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TABLE 6. Comparison of the proposed method and the state-of-the-art methods on dataset D7.

TABLE 7. Comparison of the proposed method in terms of accuracy with state-of-the-art methods on dataset D2.

VI. CONCLUSION AND FUTURE WORK
Detection of altered videos is a challenging task. The current
cutting-edge techniques face limitations ranging from eval-
uation of the method on a small number of videos, to use
of single video formats and a fixed resolution. In this paper,
a method based on deep model is proposed for classification
of authentic and tampered video clips (VCs) which consists
of three types of layers i.e., motion residual, CNN, and par-
asitic layers. Residual layer aggregates the information from
consecutive frames of VC, CNN layers extract discriminating
features from the aggregated frame of a VC and parasitic
layers employed these features to classify a VC as authen-
tic or tampered. The parasitic layers are computationally
efficient and learn the structure of authentic and tampered
VCs efficiently. The proposed method gives better accuracy
98.89% and also computationally efficient. The method can
detect even the most plausibly created forgery. Moreover,
the proposed method may motivate the research community
to think another way to enhance the performance of convo-
lution neural networks in the domain of tampering detection.
Our future work will be focused on the localization of tam-
pered objects in the video clips.
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